

Methodology and Toolset for Model Verification, Hardware/Software
co‐simulation, Performance Optimisation and Customisable

Source‐code generation.

M. BERGER, J. SOLER, L. BREWKA, H. YU, M. TSAGKAROPOULOS, Y.LECLERC, C.OLMA
DTUx4, TELETEL SA, M3SYSTEMS,SEPROTRONIC GmbH

DTU: Tech. University of Denmark
Oersteds Plads 343, DK-2800 Kgs. Lyngby

DENMARK
msbe@fotonik.dtu.dk http://www.modus-fp7.eu

Abstract: - The MODUS project aims to provide a pragmatic and viable solution that will allow SMEs to
substantially improve their positioning in the embedded-systems development market. The MODUS tool will
provide a model verification and Hardware/Software co‐simulation tool (TRIAL) and a performance
optimisation and customisable source‐code generation tool (TUNE). The concept is depicted in automated
modelling and optimisation of embedded-systems development. The tool will enable model verification by
guiding the selection of existing open‐source model verification engines, based on the automated analysis of
system properties, and producing inputs to be fed into these engines, interfacing with standard (SystemC)
simulation platforms for HW/SW co‐simulation, customisable source‐code generation towards respecting
coding standards and conventions and software performance‐tuning optimisation through automated design
transformations.

Key-Words: -Model Verification, HW/SW co-simulation, customizable code generation, SW optimization.

1 Introduction
Software quality is of primary importance in the
development of embedded systems that are often
used in safety-critical applications [1]. Moreover, as
the life cycle of embedded products becomes
increasingly tighter, productivity and quality are
simultaneously required and closely interrelated
towards delivering competitive products [2]. In this
context, the MODUS (Methodology and supporting
toolset advancing embedded systems quality)
project aims to provide a pragmatic and viable
solution that will allow SMEs to substantially
improve their positioning in the embedded-systems
development market. The project will develop and
validate a set of technical methodologies, as well an
open and customisable toolset, advancing embedded
systems quality when using Formal Description
Techniques (FDTs), by enabling:
• Model verification by guiding the selection of

existing open-source model verification
engines,based on the automated analysis of
system properties, and producing inputs to be
fed into these engines.

• Interfacing with standard simulation platforms
for HW/SW co-simulation.

• Software performance-tuning optimisation
through automated design transformations.

• Customisable source-code generation towards
respecting coding standards and conventions.

In addition, the project will provide methodologies
and open interfaces for customising and extending
the MODUS toolset for use with different (domain-
specific) FDTs, modelling practises, programming
languages, target platforms, etc.

MODUS does not aim to be competitive with the
vendors of CASE tools that are presently used in
embedded software engineering. On the contrary,
the project aims to allow the adoption of quality
strategies by complementing these tools and
preserving existing investments in technical-know.

2 Background

2.1 Formal verification and tools
Formal model verification (also known as formal
model checking) concerns a wide range of
techniques that are used for testing automatically
whether a model of a system meets a given
specification (set of properties). Most of the times,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 169 Issue 6, Volume 10, June 2013

such techniques apply for models of
hardware/software systems that need to meet safety
requirements such as the absence of deadlocks or
critical states that can cause the system to crash, or
may even be used to verify the timing properties of
real-time systems.
Formal model verification relies on mathematically-
based techniques for describing system properties,
and they can be used to mathematically prove and
ensure whether a system model meets a specified
property or not. This is why safety-critical
applications were the first to adopt such techniques.
In the framework of formal model verification, the
system under verification is specified as a finite
state machine (FSM). The system properties to be
verified are expressed in temporal logic that allows
reasoning over the possible execution paths. So,
model verification tools accept two inputs: (i) The
system model that may be represented in a wide-
range of modelling languages (UML, SDL,
Promela, IF, Verilog, etc.) and (ii) the models of the
properties that may be represented in a properties
modelling language (e.g. PCTL, PLTL, CTL, LTL,
etc). The main inherent drawback of model
checking techniques is the incapability to deal with
infinite state spaces. Therefore, special assumptions
are made and appropriate techniques are often
applied for the cases of large or complex systems.

2.2 HW/SW co-simulation and tools
The proper operation of embedded software with the
hardware is of particular importance. Currently,
most of the tools used for the development of
embedded systems support model simulation
features that can be used for HW/SW co-simulation.
Simulation is often used in conjunction with model
verification; if a system design is found not to meet
a given specification (set of properties) then
simulation techniques may be applied to identify the
design defects.
The industry has already realised the importance of
standards for embedded systems HW/SW co-
simulation. Towards this direction, SystemC[3] is
promoted by OSCI, the Open SystemC Initiative,
and has been approved by the IEEE Standards
Association as IEEE 1666™-2005. SystemC is a
C++ library/language used for the description of
Systems on Chip (SoCs) at different levels of
abstraction, from cycle-accurate to purely functional
models. It is becoming a de facto standard for
HW/SW co-simulation. SystemC is being
increasingly used for writing the Transaction Level
Models (TLM) [3] that allow embedded software
development on a virtual prototype of the final chip.
OSCI also provides an open-source proof-of-

concept simulator, on which SystemC
implementations can be validated in advance before
integrated into the target platform.
However, existing CASE tools for embedded
software development do not support interfaces to
SystemC-based simulation platforms. Various
techniques for generating SystemC from FDT
models in languages as UML and SDL have been
recently proposed [4], [5] but existing
implementations are mainly proof-of-concept
prototypes that concern a limited set of input
modelling languages.

2.3 Methodologies and tools for software
performance optimization
Code optimization is a critical component in
achieving high performance for embedded systems.
Computational specialists have adopted
programming strategies affecting the utilisation of
machine resources and have parameterized their
algorithm implementations to accommodate the
architectural variety of modern computing platforms
[6], [7], [8]. While this approach has been quite
successful, it is extremely error prone and time
consuming for developers to manually program the
management of hardware resources [9].
The programmer has to, first of all, make a
potentially beneficial program modification, then
compile it, before finally executing the new program
and recording its execution time. This modify-
compile-execute cycle must be repeatedly
performed until a sufficient performance gain is
achieved (or the programmer has run out of time).
Towards overcoming the aforementioned problems,
there has been much work in the area of iterative
optimisation aimed at automating this process [10],
[11], [12], [13]. Such approaches focus on choosing
good program modifications or transformations so
that the number of modify-compile-execute cycles is
reduced. Although it is possible to find good
performance improvement automatically, iterative
optimisation still requires many executions of
different versions of the program. As execution time
is frequently the limiting factor in the number of
versions or transformed programs that can be
considered, mechanisms that can automatically
predict the performance of a modified program
without actually having to run it have been proposed
[9], [14].
The main shortcomings of available methods and
tools for automated code optimisation can be
identified as follows:
• Code optimizers typically only deal with a part

of a program at a time, often the code contained
within a single module; the result is that they are

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 170 Issue 6, Volume 10, June 2013

unable to consider contextual information that
can only be obtained by processing larger
system parts. As a consequence, they focus on
relatively shallow "constant-factor"
performance improvements and most often do
not improve the algorithmic complexity of a
solution.

• Existing techniques are confined in the use of
specific programming languages, target
platforms and certain classes of program
modifications.

• There exist no integrated developments
environments (IDEs) that effectively combine
code optimisation with HW/SW co-simulation.
Therefore, performance tuning is very time
consuming, as in order to test the effect of the
performed modifications, developers have to
iteratively compile the program, execute it and
record its execution time on the given platform.

2.4 Present limitations relating to
compliance to coding conventions/standards

Currently, various coding standards are available in
different industrial sectors. The avionics industry for
example requires that safety critical-software be
assessed according to strict certification authority
guidelines before it may be used on any commercial
airliner. ARP 4754 and DO-178B are guidelines
used both by the companies developing airborne
equipment and by certification authorities. In this
context, the main relevant shortcoming of present
CASE tools is that their automatic code generation
strategies are not sufficiently customisable. In fact,
most often software developers have to manually
reorganise the generated source code in order to
comply with customer-/project-specific coding
standards. Of course, there exist several open-source
model-driven code generation tools (e.g. Open
ArchitectureWare, Eclipse Motion Modelling,
AndroMDA, Mia-Generation, etc) that can be
extensively customised, but this sort of
customisation is very time-consuming as it is based
on the use of complex and not standard
programming interfaces.

3 The MODUS project contributions
MODUS will apply and advance state-of-the-art
technologies towards developing a set of
methodologies and tools advancing embedded
systems quality by enabling effective model
verification, easy interfacing with standards for
HW/SW co-simulation, model-level performance
optimisations, and customisable source-code

generation. In relation to the shortcomings presented
in Section 2, MODUS advances the technological
progress through the following innovative activities:

3.1 A harmonised methodological and tooling
framework.

The project will provide a harmonised
methodological and tooling framework for model
verification, HW/SW co-simulation, performance
optimisation, and customisable source-code
generation, without placing restrictions on the use of
FDTs and modelling languages.The MODUS
framework will be centred on the definition of a
Language Neutral Representation (LNR) for event-
based systems that will be used as the intermediate
format for interfacing with external tools and
platforms. Advanced features as system-logic and
architecture transformations for interfacing with
different tools and platforms and optimising system
performance, as well as system model analysis for
selecting/customising model verification strategies,
will be performed at the LNR model level, before
generating the outputs to external tools and target
platforms. It should be stressed though that the LNR
format will be hidden from the users of the tools. In
fact, they will be provided with the means to
develop high-quality implementations by using their
favourite Formal Description Techniques (UML,
SDL, Simulink, LUSTRE, etc.).

3.2 Effective exploitation of existing model
verification techniques

MODUS will allow the effective exploitation of
existing model verification techniques that are
currently dispersed across different modelling
frameworks and tools. As explained in Section 2,
formal model verification features are incorporated
in a limited set of CASE tools for use with specific
modelling languages. On the other hand, there exist
many stand-alone formal model verification tools
but these are highly specialised and do not adopt
harmonised modelling approaches. In this context,
MODUS will not merely provide a front-end to
existing tools for formal model verification. It will
further develop a tool that will guide the selection of
the underlying model verification techniques to be
used, through the automated analysis of the input
system models and properties to be verified.

3.3 Formal representation of coding
standards/conventions andautomatic
generation of code.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 171 Issue 6, Volume 10, June 2013

MODUS will provide a methodology and tool for
the formal representation of coding
standards/conventions and the automatic generation
of code that complies with them. As already
mentioned, the code generation strategies of popular
CASE tools are not sufficiently customisable. On
the other hand, the customisation of open-source
model-driven code generation tools is very time-
consuming as it is based on the use of complex and
not standard programming interfaces. As a
consequence, in practise software developers have
to manually reorganise the source code generated by
CASE tools in order to comply with customer-
/project-specific coding standards.MODUS will
define a formalism for the effective modelling of
coding standards/conventions and will develop a
tool for the customisable generation of code that
respects these formal representations. This will
enablesoftware developers to automatically acquire
high-quality source code without needing to
repeatedly and manually apply the coding rules on
the source code generated by CASE tools.

3.4 Performance optimisation applicable
across different target platforms.

The project isgoing to develop a methodology and
tool for performance optimisation that will facilitate
the improvement of the algorithmic complexity of
software designs and will be applicable across
different target platforms.As explained in Section 2
present code optimisers are for use with specific
programming languages and platforms. Moreover,
they are confined to relatively “shallow”
performance improvements that are applicable to
small system parts.The MODUS will provide a code
optimisation approach that will be based on
transformations performed at the Language-Neutral-
Representation (LNR) model level. It will make use
of patterns for identifying and applying applicable
transformations relating to the control-flow
complexity (state-transition logic) and data-flow
complexity (algorithms and processing taking place
within states) of a software system, rather than just
rewriting small code blocks in a source-code
implementation. This will be achieved through the
exploration/analysis of the LNR models by using
formally represented rules for identifying design
patterns for which optimisation-related
transformations apply. Up to now the use of
formally represented design patterns has been
confined in the context of formal model
checking/verification techniques but has not been
applied for the purposes of performance-tuning
transformation.

The MODUS approach will provide significant
benefits by facilitating the improvement of the
algorithmic complexity of software designs. In
addition, through the use of the MODUS code
generation tools, it will allow the easy derivation of
optimised source code for different target platforms.

4 The MODUS Approach to enhance
embedded system quality.

To meet its overall goal, and the objectives
identified in Section 3, MODUS shall design and
develop a set of methodologies and tools for model
verification, HW/SW co-simulation, and
customisable code generation.

4.1 Infrastructures for interfacing with
existing tools

The project will first develop the tooling
infrastructure that will allow the effective
interfacing with existing tools and platforms. The
development of the MODUS framework for model
transformation and code generation will involve the
accomplishment of the following objectives:
• Definition of a language neutral representation

(LNR) for the generic modelling of event-
oriented systems.
LNR will be used as the intermediate format for
generating different types of system
representations, i.e. inputs to model verification
engines, inputs to HW/SW co-simulation
engines, and optimised source-code system
implementation that respects coding
standards/conventions. By using a standard
intermediate format, any model transformation
or code generation strategy will rely on inputs in
the same formalism (LNR). The definition of
the LNR will be based on a thorough analysis of
the behavioural concepts and date types of a
wide range of potential input FDTs / modelling
languages (UML, SysML, SDL, LUSTRE, etc),
as well of the potential output
modelling/programming languages (Promela,
IF, SMV, C, Ada, etc.).

• Definition of the strategies for the generation of
LNR system representations from FDT-based
system models.
The concepts and structure of the language, in
which the system/model is implemented, have
to be known by the LNR generator. The input
system/model will be parsed (based on the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 172 Issue 6, Volume 10, June 2013

appropriate model parsing profile as shown in
Figure 1) and the characteristics of the input
language will be appropriately categorised.

• Definition of the strategies for model
transformation.
Both the input and output models of the LNR
model transformation engine will be in the LNR
formalism. In the context of the MODUS
approach, model transformation will serve two
main purposes: Model transformations applied
at the LNR-model level (e.g. data-flow
optimisations, loop optimisations, etc.) towards
optimising the system runtime performance.
Formal refinement of system models for adding
information (e.g. timing properties, platform
information) willbe used for the representation
of system properties for different types of model
verification and simulation engines.

• Definition of the strategies for code generation.
A technique will be defined for the generation
of code in different modelling/programming
languages using as inputs the LNR-based
system models. These mechanisms will provide
the front-ends to different tools and platforms.
They will also be responsible for enforcing non-
functional coding rules as naming conventions,
addition of comments, file organisation, etc.
Code generation will rely on the use of code
generation patterns (templates) that will be
based on state-of-the-art languages used for
such purposes (e.g. ATL, TXL, Stratego/XT,
CIL, etc).

4.2 Tool for model verification and HW/SW
co-simulation

The MODUS framework for model verification and
HW/SW co-simulation will remove the need for
software engineers to deal with the implementation
details of the modelling languages used by existing
model verification engines (e.g. Promela, IF, SMV,
LTL) and HW/SW co-simulation platforms
(SystemC). The implementation of the relevant tools
will exploit the LNR-based model transformation
and code generation tool (Section 4.1). The model
verification and HW/SW co-simulation tools will be
used in conjunction with existing modelling
environments / CASE tools.
The MODUS tool for model verification and
HW/SW co-simulation will support the following
key features:
• Automated generation of system representations

in the formalisms used by existing model
verification engines and HW/SW co-simulation

platforms from system models in different FDTs
/ modelling languages.

• User friendly modelling of system properties
(temporal logic expressions) will be verified by
means of model checking, without needing to
deal with the multitude of relevant property
languages (e.g. PCTL, PLTL, CTL, etc) used by
existing model checking tools.

• Interactive control of model verification and
HW/SW co-simulation strategies by the user
through the analysis of the characteristics of the
automatically generated LNR system models in
relation to the model verification / simulation
requirements. For instance, this feature will
allow the selection of a model checking tool
(and relevant target formalism) that better deals
with the large size of a system as compared to
others, or it is more appropriate for the
verification of specific aspects (e.g. timed
properties).

The development of the MODUS framework for
model verification and HW/SW co-simulation will
involve the accomplishment of the following
objectives:
• Analysis of the features of existing model

checking tools (SPIN, NuSMV, Uppaal,
EmbeddedValidator, etc) and development of a
relevant knowledge base.

• Definition of a methodology for the GUI-based
modelling of system properties to be verified by
means of model checking.

• Definition of the strategy for the automated
analysis of generated LNR system models in
relation to model verification and HW/SW co-
simulation requirements, and the interactive
control of the relevant strategies based on the
contents of the knowledge base.

• Prototype development of the TRIAL tool
including the development of the libraries of
Model Transformation Patterns and Code
Generation Patterns for automatically
generatingthe inputs to existing model
verification and HW/SW co-simulation
platforms.

• Design and development of the module
allowing the analysis of generated LNR system
models in relation to model verification and
HW/SW co-simulation requirements, and the
interactive control of the relevant strategies.

• Design and development of the GUI for the
user-friendly modelling of system properties
under verification.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 173 Issue 6, Volume 10, June 2013

4.3 Tool for performance optimisation and
customizable source-code generation

The MODUS approach to source-code generation
will combine the automated organisation of source
code according to coding conventions/standards,
with the optimisation of system performance.
In detail, performance-tuning optimisationsare
related to the provisions made for optimising system
performance and/or handling trade-offs between
memory utilisation, speed, power consumption, etc,
by applying transformations as data-flow
optimisations, loop optimisations, etc.
Coding conventions/standards are related to a wide-
range of source-code implementation aspects as
complexity, security, readability, maintainability,
etc.
The MODUS tool for performance-tuning
optimisation and customizable source-code
generation will support the following key features:
• Assisted design optimisation for meeting

performance requirements, through the iterative,
automated analysis of the generated LNR
models and the identification of applicable
optimisations.

• Formal modelling of coding
conventions/standards using a formalism that
will defined within the project. Moreover,
checking and identification of conflicts between
the specified coding convention/standard rules
towards allowing the user to provide consistent
specifications.

The development of the MODUS toolfor
performance-tuning optimisation and customizable
source-code generation will involve the
accomplishment of the following objectives:
• Definition of the strategies for applying

different types of design optimisations. This will
involve the mapping of the identified types of
optimisations to “low-level” model
transformation patterns represented in the
selected “low-level” code transformation
language (e.g. ATL, SmartQVT, Kermeta, etc).

• Definition of the strategies for the automated
analysis of generated LNR models and
discovery of applicable optimizations. These
strategies will involve the processing of the
generated LNR models for finding the system
blocks that each candidate optimisation may
apply for. This will be achieved through the
exploration/analysis of the LNR models by
using formally represented rules for identifying
design patterns for which optimisation-related
transformations apply.

• Analysis of existing coding standards and
widely-adopted coding conventions (e.g. ARP
4754, DO-178B, etc).

5 MODUS toolset technical
specifications
In the following sections, an overall description of
the MODUS toolset technical specification is
provided by giving a detail description of the
MODUS tool components in terms of functional
specifications, architecture, interfaces and
deployment features.

5.1 MODUS Infrastructure for interfacing
with existing modelling languages

One of the main goals of the MODUS project is to
incorporate different Formal Description
Techniques (FDTs) that are widely-used into the
software development process of embedded systems
(e.g. UML, SysML, etc.) towards the definition of a
language neutral representations (LNR) of the input
models. The LNR will represent a standard
intermediate format which will facilitate the model
transformation for generating different types of
system/software representations to
modelling/programming languages(e.g. Promela, C,
SystemC, etc.) for model verification, source code
generation or HW/SW co-simulation.

Figure 1: MODUS infrastructure for interfacing
with existing modelling languages

Figure 1illustrates the proposed infrastructure for
interfacing with existing modelling languages based
on a model transformation module. The model
transformation module will include two main
components: the Model Parser and the Generator.
The Model Parser will parse the different FDTs
models based on a library of model parsing profiles.
The library of model parsing profiles will be
extendable and will include the description of
behavioural concepts and data types according to
FDTs input models. The Generator will generate the
LNR representation of the input model according to
specified transformation patterns that correspond to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 174 Issue 6, Volume 10, June 2013

the mapping of input models concepts to the defined
LNR language
Based on the initial analysis of the state-of-the-art
review of existing technological requirements and
SMEs’ development strategies from different
application domains [1], UML has been identified as
the main modelling language for a wide range of
applications/systems in different sectors.
The Unified Modelling Language (UML) is a
standardized general-purpose modelling language in
the field of object-oriented software engineering
created by the Object Management Group. UML has
become the industry standard for modelling
software-intensive systems and includes a set of
graphic notation techniques to create visual models
of object-oriented software-intensive systems. UML
is used to specify, visualize, modify, construct and
document the artifacts of an object-oriented
software-intensive system under development.
Towards the definition of a common formalism for
the transformation of the input modelling languages,
UML language and its extensions (i.e. modelling
languages that reuse UML’s concepts in terms of
stereotypes, definitions, constraints, diagrams etc.)
like SysML and UML MARTE are considered as
the starting point of LNRs specification. Thus, in the
context of this deliverable, UML-based input
models will be considered for the initial
specification of the separate functionalities of the
MODUS toolset below.

5.2 FORMAL MODEL VERIFICATION

The Formal Model verification functionality of the
MODUS toolset will provide to the user the means
for performing the formal validation of the system
designed.
The interface that users interact with should be
integrated with Eclipse IDE providing an
environment in which a lot of developers are
familiar with.
A wizard-like menu system will be implemented in
the MODUS toolset where information required for
formal verification and validation can be provided
by the user. This information includes:
• description of the system,
• preferences for the formal modelling language,
• properties to be verified (described in a syntax

coherent with the modelling language used for
the formal verification).

The block diagram of the Formal Verification and
Validation module of the MODUS toolset is
presented in Figure 2.
Major part of the interfacing with the user is realised
within the Eclipse modelling framework

[4](depicted by the Eclipse block). The input i.e.,
the UML diagram of the system to be verified can
be created or modified, and provided from the
Papyrus model editor.

Figure 2: Integration of tools for Formal Model
Verification within the MODUS tool-set

5.3 HW/SW CO-SIMULATION

The architectural block diagram of the HW/SW co-
simulation module is depicted in the following
figure:

Figure 3: HW/SW Co-simulation Module -

Architectural Block Diagram

The HW/SW co-simulation module is made of two
elements:
• The SystemC/TLM2.0 model and XML model

description file Engine.
This element generates the SystemC/TLM2.0
architecture of a virtual platform, taking as input
a UML MARTE HRM/HwLogical model. To

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 175 Issue 6, Volume 10, June 2013

be more precise, the subset of the model used by
the element is the Component Diagram (see
§3.3.1). Along with the SystemC model, a XML
model description is generated (useful for the
second element of the module).
In order to implement this functionality, a
generic code generation engine is used: the
Acceleo Code Generation Engine[13]to
generate SystemC/TLM2.0 and XML.Two
specific Acceleo modules have to be designed:
one for SystemC/TLM2.0 generation, one for
XML generation. This element will mainly be
based on specific generation scripts and
templates, and will be provided as an Eclipse
plugin.

• The Platform Configuration Tool.
This toolgenerates the SystemC/TLM2.0 virtual
platform, ready for simulation, taking as inputs
the SystemC/TLM2.0 architecture and the XML
description file generated by the previous
element, a set of SystemC/TLM2.0 IP models,
and a set of executable binaries.
In addition, it provides a front-end interface
forMODUS’ users. This graphical interface
helps the users: in managing the SystemC
modules’ skeletons in which to manually
include their IPs, in managing the SystemC
modules corresponding to the memory
components in which to manually link their
executable binaries, and in setting the
simulation-relevant parameters. The XML
description file summarizes the information
related to the configuration, and is extensively
used by this module. This module will be
provided as an Eclipse plugin.

5.4 Customizable source code generation.

The modelling concepts of the input models that
will be implemented by the code generation
mechanism will be identified. For each of these
modelling concepts, the implementation strategy
and the properties of the code generation that can be
customized by the end-users will be defined.
Specific parameters (customisable properties) can
be defined by the end user in order to select or
control the target language implementation for every
semantic. The code generation module architecture
for the MODUS toolset is illustrated in Figure 4.
The code generation module will include two main
components: a graphical interface for the
configuration of the generator, the code generator
GUI (Code Generator GUI Plugin) and the main
code generator (Code Generator Module Plugin).
Code Generator GUI

The code generator GUI will be based on the
following blocks:
• Front-End
• Properties
• Generation Execution

Figure 4: Code Generation Architecture Diagram

The front-end will be the generator interface relative
to the user, where the user interacts with it directly.
Through the front-end the user can access the code
generator properties and can start the code
generation procedure. An interface can be a popup
menu, or a menu in the toolbar of Eclipse. The
properties element is a menu called by the front-end,
where the user can set specific actions to the source
code generator. Such actions can be the generation
output folder, to generate header files, to generate
the C makefile, to generate the author name in all
the source files, etc. The generation execution will
be the main entry point of the code generation
module. According to the properties set by the user,
it will call the code generation module plugin for
starting the actual code generation procedure.
The code generator module will be developed with
different levels of abstractions based on templates,
services and execution chains elements.
Templates will describe the information required to
generate source code from a meta-model such as
UML. Within each template, several scripts will
enable the developer to customize the generator
accurately. The developer will write the templates
repository in Model to Text Language (MTL) [9],
an implementation of the Object Management
Group (OMG) MOF Model to Text Language
(MTL) standard [9].
Services will be used to extend templates in order to
implement complex operations that would be very
complicated to implement within the template files.
Services will be public methods which are executed
in the same context, from one call to another.
Execution chains will be used to execute a
generation for a target application. They allow the
chaining of several generations and operations on
models. Execution chains will be used to simplify
execution and customization operations for the
generation. The actions part, also called action set,
will contain all the tasks that must be carried out by

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 176 Issue 6, Volume 10, June 2013

the execution chains according the configuration of
the code generation module.
Finally, the Code Generation Engine will be parse
the input model and the specified template/services
described above for the selected target source code
language in order enable the transformation of the
input model to the selected source.

5.5 Performance Optimisation

The architecture of the performance optimisation
module for the MODUS toolset is presented in
Figure 5.

Figure 5: Performance Optimization Module

Architecture Diagram

The performance optimization module will include
three main components: a graphical interface for the
configuration of the module, the optimised code
generation templates& instrumentation and the
partitioned models optimisation module.
The performance optimisation GUI will provide the
user configuration interface for the performance-
tuning functionalities. Through the GUI the user
will access the separate functions executed by the
performance optimisation module and will be able
to configure the relevant parameters for each
functionality. A menu with the available
configuration options will be integrated within
Eclipse, where the user shall include the desirable
configurations and specific actions for the execution
of the performance optimisation module.
The optimised code generation templates&
instrumentation component will provide additional
code generation strategies to achieve code
optimisation according to developer’s needs and
constraints. Different programming strategies
affecting the utilisation of machine resources will be
defined and evaluated for the UML modelling
concepts implemented by the code generation
mechanism. In order to evaluate the performance
impact of each source code generation strategy,
specific performance indicators will be identified

including memory consumption and code execution
metrics. The developed code generation strategies
will include templates, services and execution
chains for each performance indicator, as described
in section 5.4:
The partitioned models optimisation componentwill
include the parsing mechanism of UML-specific
model representations of a virtualised embedded
system. Additionally, it will provide the
interworking interface with the Xoncrete external
tool [15]making the proper model transformations
according to the Xoncrete tool API specification.
Finally, it will generate the optimized scheduling
configuration file according to the user input that
will enable the deployment of the XtratuM
hypervisor [16]on the target platform based on the
input model specifications.

5.6 Toolset Integration

In the frame of the MODUS project, the Eclipse
Modelling Framework (EMF)[4] will be used which
is a modelling framework for building tools and
other applications based on a structured data model.
EMF provides an open source integrated and user-
consumable environment for editing any kind of
EMF model and particularly supporting UML and
related modelling languages such as SysML and
MARTE. In addition, the integrated Papyrus tool
provides diagram editors for EMF-based modelling
languages amongst them UML 2 and SysML and
the glue required for integrating these editors
(GMF-based or not) with other CASE tools.
MODUS tool will be composed by extension
modules that implement the various supported
functionalities in an independent and configurable
way.

Figure 6: MODUS toolset integration architecture

Figure 6 presents the integration architecture of the
MODUS toolset. By building on the infrastructure

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 177 Issue 6, Volume 10, June 2013

provided by the EMF, the MODUS tool will be
highly customizable and can be easily augmented
with additional features in an incremental and non-
invasive manner.

6 Conclusion

MODUS is targeting the market of tools for
embedded software engineering. The project will
develop a toolset advancing embedded systems
quality that will target the growing group of SMEs
(and bigger companies as well) specialising in the
development of embedded systems in different
industrial sectors (e.g. avionics, automotive systems,
consumer electronics, telecommunications systems,
etc).
It should be stressed that MODUS does not aim to
be competitive with the big vendors of CASE tools
presently used in embedded software engineering.
On the contrary, the project aims to allow the
adoption of quality strategies by preserving existing
investments in technical-know and tools. The
MODUS approach is aligned with present market
needs; the familiarity with tools, ease of use, and
compatibility/interoperability remain among the
most important criteria when selecting the
development environment for a project.

7 References:

[1] XIN BEN LI, DE CHAO SUN, ”Formal
Analysis and Verification of a Communication
Protocol”, 5th WSEAS Int. Conference on
Information Security and Privacy, Venice, Italy,
November 20-22, 2006
[2] Ďurfina, L., Křoustek, J., Zemek, P., Kolář,
D., Hruška, T., Masařík, K., Meduna, A.: Design of
an Automatically Generated
RetargetableDecompiler, In: 2nd European
Conference of COMPUTER SCIENCE (ECCS'11),
Puerto De La Cruz, Tenerife, ES, NAUN, 2011, p.
199-204, ISBN 978-1-61804-056-5
[3] Hyperlink at: http://www.systemc.org
[4] W.H. Tan, P.S. Thiagarajan, W.F. Wong, Y.
Zhu and S.K. Pilakkat “SynthesizableSystemC Code
from UML Models,” (2004) hyperlink at:
http://www.scientificcommons.org/43529677
[5] Sergey Balandin, Michel Gillet, Alexey
Rabin, ValentinOlenev, Alexander Stepanov, Irina
Lavrovskaya, “SystemC and SDL Co-
ModellingImplementation”, hyperlink at:
http://fruct.org/conf7/Rabin_SystemC_and_SDL_C
o-Modelling_Implementation.pdf

[6] R. C. Whaley, A. Petitet, and J. Dongarra.
Automated empirical optimizations of software and
the ATLAS project. Parallel Computing,27(1):3–25,
2001.
[7] R. Vuduc, J. Demmel, and K. Yelick.
OSKI: An interface for a self-optimizing library of
sparse matrix kernels, 2005.
[8] M. Frigo and S. Johnson. FFTW: An
Adaptive Software Architecture for the FFT. In
Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing
(ICASSP), volume 3, page 1381, 1998.
[9] Qing Yi, “Automated Programmable Code
Transformation For Portable Performance Tuning,”
Hyperlink at:
http://www.cs.utsa.edu/~qingyi/papers/ROSE2POE
T.pdf
[10] M. Stephenson and S.P. Amarasinghe.
Predicting unroll factors using supervised
classication. In Proceedings of International
Symposium on Code Generation and Optimization
(CGO), pages 123-34, 2005.
[11] B. Franke, M.F.P. O'Boyle, J. Thomson, and
G. Fursin.Probabilistic source-level optimization of
embedded programs. In Proceedings of the
Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 78-96, 2005.
[12] K.D. Cooper, A. Grosul, T.J. Harvey, S.
Reeves, D. Subramanian, L. Torczon, and T.
Waterman. Acme: adaptive compilation made e
cient. In Proceedings of the Conference on
Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 69-77, 2005.
[13] P. Kulkarni, W. Zhao, H. Moon, K. Cho, D.
Whalley,J. Davidson, M. Bailey, Y. Paek, and K.
Gallivan. Finding e ective optimization phase
sequences. In Proceedings of the Conference on
Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 12-23, 2003.
[14] Christophe Dubach, John Cavazos,
BjörnFranke, GrigoriFursin, Michael F.P. O'Boyle,
Olivier Temam, “Fast compiler optimisation
evaluation using code-feature based performance
prediction,” CF '07 Proceedings of the 4th
international conference on Computing frontiers.
[15] Xoncrete, Integrated editor and analysis
tool/planning tool for XtratuMhypervisor,
http://www.fentiss.com/en/products/xoncrete.html
[16] XtratuMhypervisorfor real-time embedded
systems, http://www.xtratum.org/

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

M. Berger, J. Soler, L. Brewka, H. Yu,
M. Tsagkaropoulos, Y. Leclerc, C. Olma

E-ISSN: 2224-3402 178 Issue 6, Volume 10, June 2013

http://www.fentiss.com/en/products/xoncrete.html�
http://www.xtratum.org/�

